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Abstract—Temperature control of processes that involve the 
heating and cooling of a closed batch reactor can be a real 
problem for conventional Proportional-Integral-Derivative based 
loop controllers. Tuning can be extremely difficult due to the 
reduced stability margins proved for these types of processes. 
This paper describes the application of a new advanced process 
controller that is designed to handle integrating-type processes 
with long dead times and long time constants. The results 
described demonstrate that reactors that could previously only 
be operated manually can be easily automated using model 
predictive control technology. The barrier to automation of the 
reactor batch controls can be removed, resulting in the 
opportunity for tremendous improvements in batch consistency, 
reduced batch cycle times, and improved productivity. 

 
Index Terms—Adaptive Control, Model Based Predictive Control 

(MBPC), Laguerre Identification, Control of batch reactors, 
Temperature Control, DowTherm. 

1. INTRODUCTION 

Control of processes that involve the heating and cooling of a 
closed batch reactor can be a real problem for conventional 
Proportional-Integral-Derivative (PID) based loop controllers, due 
to the reduced stability margins proved for these applications. 

These processes exhibit long dead times and time constants and 
have an integrating response due to the circulation of the heating or 
cooling medium through coils within the reactor or jackets on the 
outside of the reactor. 

The advanced controller described in the paper has the ability to 
model and control marginally stable processes with long time delays 
and long time constants. The controller has the ability to incorporate 
and model the effect of known and unknown disturbances. 

The field application results presented in this paper demonstrate 
that reactors that could previously only be operated manually can be 
easily automated using model predictive control technology. The 
barrier to automation of the reactor batch controls can be removed 
resulting in the opportunity for tremendous improvements in batch 
consistency, reduced batch cycle times, and improved productivity. 

The first section of this paper will address the theory behind the 
dynamic modeling and control. The second section describes the 
process to be controlled. In the third section the results show the 
benefits of this technique when coping with a real world application. 

2. THE ADAPTIVE PREDICTIVE CONTROL STRATEGY 

Based on an original theoretical development by Dumont et al [1, 
2], the controller was first developed for self-regulating systems. 
This controller was credited by various users with several features, 
among which we can mention: the reduced effort required to obtain 
accurate process models, the inclusion of adaptive feedforward 
compensation, the ability to cope with severe changes in the process 
etc. 

All these features together with recognized need in industry made 
the authors of this paper consider further development of the control 
strategy for a controller capable of dealing with integrating systems 
with delay in the presence of unknown output disturbances. The 
result of these investigations was an indirect adaptive controller 
based on the on-line identification using an orthonormal series 
representation working together with a model based minimum 
variance predictive controller. 
 
Process Modeling using Laguerre Series Representation 

Dumont et al [3] considered the system identification based on 
Laguerre orthonormal functions. This method proved its simplicity 
when dealing with the representation of transient signals, closely 
resembling the Pade approximation for systems exhibiting dead 
time. 

The Laguerre function, a complete orthonormal set in L2, has the 
following Laplace domain representation: 
 

i s p
s p i

s p i i NL ( )
( )

( )
, ... ,=

− −

+
=2

1
1   ,     (1) 

 
where 
 

i is the number of Laguerre filters (i = 1, N); 
p > 0 is the time-scale; 
Li(x) are the Laguerre polynomials. 

 
The reason for using the Laplace domain is the simplicity of 

representing the Laguerre ladder network, as shown in Fig. 1. 
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Fig. 1. The Laguerre Ladder Network 

 
This network can be expressed as a stable, observable and 

controllable state space form as: 

l k Al k bu k( ) ( ) ( )+ = +1  (2) 

y k c l kT( ) ( )=  (3) 
 
where 

[ ]l k l k l kT
N

T
( ) ( ), ( )= 1    ...   ,  is the state of the ladder 

(i.e., the outputs of each block in Fig. 1.); 

[ ]C k c k c kk
T

N( ) ( ), ( )= 1    ...    ,  are the Laguerre 
coefficients at time k; 

A is a lower triangular square (N x N) matrix. 

The Laguerre coefficients represent a projection of that plant 
model onto a linear space whose basis is formed by an orthonormal 
set of Laguerre functions. 

The above form is suitable to represent stable systems. The 
challenge is to overcome the integrating characteristic of the plant 
model. In these circumstances, the approach taken was a 
factorization of the plant into its stable and marginally stable part, 
considered known. Note that the same procedure can be applied to a 
plant that contains well-known unstable dynamics. Of course the 
robustness of the identification method applied to the global plant is 
conditioned by the exact knowledge of the marginally stable or 
unstable part of it. 

This approach will lead in discrete time to a SISO controller that 
reads variation of the process variable (system output) ∆y(k) but 
provides control variable movements (system input) u(k). 

The same concept used in the plant identification is used to 
identify the process load (output disturbance). In this case the major 
difference is that the controller does not have access to the 
disturbance model input. This issue is addressed in a stochastic 
manner that provides an estimate of the load. The development is 
based on the observation that an external white noise feeds the 
disturbance model, resulting in a colored signal. This signal can be 
estimated as the difference between the plant process variable 
increment and the estimated plant model with the integrator 
removed. 

Using the plant and disturbance models we can develop the 
Model Based Predictive Control (MBPC) strategy. 
 

The Predictive Control Strategy 

The concept of predictive control involves the repeated 
optimization of a performance objective over a finite horizon 
extending from a future time (N1) up to a prediction horizon (N2) [4, 
5]. Fig. 2. characterizes the way prediction is used within the MBPC 
control strategy. Given a set point s(k + l), a reference r(k + l) is 
produced by pre-filtering and is used within the optimization of the 
MBPC cost function. Manipulating the control variable u(k + l), 
over the control horizon (Nu), the algorithm drives the predicted 
output y(k + l), over the prediction horizon, towards the reference. 

 

 
Fig. 2. The MBPC Prediction Strategy 

 
In this paper we deal with a simplified version of the MBPC 

algorithm because we have to ensure real time implementation of the 
whole indirect adaptive scheme, based on a sampling time of 1 s. 

Predictive control is used instead of a conventional passive state 
or output feedback control technique due to is its simplicity. In 
handling varying time delays and non-minimum phase systems. 
The simplified version, i.e., minimum variance control, is 
characterized by the fact that the N2 steps ahead output prediction 
(y(k + N2) is assumed to have reached the reference trajectory value 
yr(k + N2). In other words we can write: 
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Making an essential assumption that the future command stays 

unchanged: u(k) = u(k + 1) =  …  =u(k + N2), then the N2 steps ahead 
predictor becomes: 
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where 
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Note that here u(k) is unknown, ud(k) (the estimated disturbance 
model input) is estimated and uff (k) (measured disturbance model 
input) is measured. β* is the sum of the first N2 parameters of each 
corresponding system (i.e. plant, stochastic disturbance and 
deterministic disturbance, respectively). 

It is obvious from the above definitions that if a designer is not 
looking beyond the dead time of the system β* is zero. One must 
choose N2  such that β is of the same sign as the process static gain 
and of sufficiently large amplitude. A possible criterion to be 
satisfied when choosing the horizon N2 is: 

β εsign( ( ) ) ( )C I A b C I A bk
T

K
T− ≥ −− −1 1  (6) 

with ε = 0.5. Note that in the simple case of a minimum variance 
controller the matrix (I - A)-1b can be computed off-line as it 
depends only on the Laguerre filters. Additional computation has to 
be carried out on-line since the identified models (i.e., their 
Laguerre coefficients: Ck , Cf f , and Cd) are changing. 

As shown in Fig. 2., a first order reference trajectory filter can be 
employed to define the N2 steps ahead set point for the predictive 
controller (yr(k + N2)): 

y k N y k yr
N N

sp( ) ( ) ( )+ =∝ + − ∝2
2 21  (7) 

Solving control equation (4)) for the required control input u(k) 
we have: 
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Indirect Adaptive Control Scheme 

As briefly mentioned in the introduction, the indirect adaptive 
control scheme suggested uses a modified recursive least square 
algorithm [6] to estimate the parameters of the models involved in 
control equation (4). Since the control law is computed at each time 
instant, issues of stability and the convergence of the method 
become paramount. In [1] these issues are partially addressed. 

The adaptive control identification algorithm has a number of free 
parameters. A designer has to minimize this number since the 
scheme is implemented in real time. For instance the choice of the 
Laguerre filter pole p can be restricted to a fixed value providing a 
good choice for the system sampling rate. For a given plant there is 
an optimal pole that will minimize the number of filters required to 
obtain a required accuracy for the model. 

In a similar fashion, as in the case of a Pade approximation, the 
dead time of the process is well modeled by a Laguerre network, 
depending on its number of filters. A tradeoff has been observed 
between the dead-time modeling and the model settling time. Too 
many filters will result in a long process model settling time. 

Since the model of the plant at crossover frequency is very 
important from the perspective of the transient response of the 
closed loop system, a good choice for the Laguerre pole will be in 
that area. If, for other reasons, a fixed choice for the pole is required, 
then choosing an appropriate sampling time can change the time 
scale of the system. 

We have knowledge of the existence of the integrator both in the 
plant and in the disturbance models, therefore our option was to 
predict the evolution only of the stable part of the plant and load 
models and then add the integrator directly in the control law. This 
path is motivated by the choice of the cost function used in 
computing the optimal control movement (u(k)). Another version, 
under development, includes a full MBPC cost function. This 
approach, as described [7], augments the plant model (including the 
known marginally stable or unstable part) with the disturbance 
model and computes the control movement based on the prediction 
of the augmented model. 

The closed loop system is depicted in Fig. 3. The advanced 
controller was implemented in C++ and runs on the Windows-NT™ 
operating system. An OLE for process control (called OPC server) is 
used to communicate to the Distributed Control System (DCS). 
Logic was programmed in the DCS device to allow operation from 
the existing operator console. The operator can select between 
manual, PID (DCS) or advanced control modes. 
 

PROCESS TRANSFER
FUNCTION

IDENTIFICATION

UPDATE
CONTROL

MODEL

CALCULATE
CONTROLLER

OUTPUT

PLANT

SETPOINT

INPUT PROCESS

RESPONSE  
Fig. 3. The Closed Loop Advanced Control System 
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3. BATCH REACTOR PROCESSES 

The chemical batch reactor in this application is used to produce 
various polyester compounds. The process involves combining the 
reagents and then applying heat to the mixture in order to control the 
reactions and resulting products. A specific temperature profile 
sequence for the batch reaction must be followed to ensure that the 
exothermic reactions occur in a controlled fashion and that the 
resulting products have consistent properties. An additional 
requirement is that the reaction rates must be controlled to limit the 
production of waste gases that must be incinerated to the design 
capacity of the incinerator. The potential of an uncontrolled 
exothermic reaction is present in some batches and proper 
temperature control is critical to regulating these reactions and 
preventing explosions. 

The reactor operates in a temperature range between 70 and 
220°C and is heated by circulating a fluid (DowTherm-G)through 
coils on the outside of the reactor. This fluid is, in turn, heated by a 
natural gas burner to a temperature in the range of 500°C. The 
reactor temperature control loop monitors temperature inside the 
reactor and manipulates the flow of the DowTherm fluid to the 
reactor jacket. Increasing the flow increases heat transfer rate to the 
reactor. It is also possible to cool the reactor by closing the valves 
on the heat circuit and by re-circulating the DowTherm fluid 
through a second heat exchanger. Cooling is normally only done 
when the batch is complete to facilitate product handling. Refer to 
Fig. 4. for a simplified schematic of the system. The temperature 
response of the reactor and the temperature response of the 
DowTherm fluid at the outlet of the reactor jacket coils are shown in 
Fig. 5. 

The plant has made several unsuccessful attempts to automate 
control of the reactor temperature using a conventional 
Proportional-Integral-Derivative (PID) controller. The reactor 
temperature is difficult to control because of the long dead time 
(about 8 minutes) and long time constant (about 18 minutes) 
associated with heating the reactor from the outside. This is further 
complicated because the system essentially behaves as an integrator 
due to the accumulation of heat in the reactor and is, therefore, only 
marginally stable in open loop. PID controllers are not well suited 
for systems with these response characteristics and can be very 
difficult to tune for closed loop stability. The reactor can only be 
controlled manually by experienced operators and requires constant 
attention to ensure that the temperature profile and resulting reaction 
rates are correct. It should be noted that a second reactor at this plant 

was successfully automated using PID control, but this reactor is 
heated from internal coils and has a much shorter dead time and 
time constant and is thus easier to control. 

The reactor temperature is stable only if the heat input to the 
reactor equals the heat losses. If the DowTherm flow is set even 
slightly higher than this equilibrium point, the reactor temperature 
will rise at a constant rate until reactor temperature limits are 
exceeded. The equilibrium point changes during the batch due to 
heat produced by the exothermic reactions (less heat input required 
to maintain reactor temperature) and the production of vapours 
(more heat input to maintain reactor temperature). During the final 
phase of the batch, the exothermic reactions are complete and the 
vapour production gradually falls almost to zero. Very little heat 
input is required to maintain reactor temperature during this phase. 

 

The operators have developed techniques to manage the manual 
control of this sequence. From experience, the DowTherm flow is 
initially set to a nominal value (17% to 19%) that will cause a slow 
rise in the reactor temperature. The rate of rise is not constant due to 
the changes in heat requirements that occur during the batch. If the 
rate of rise is too fast as to cause an overload of the vapour 
incinerator or so slow as to stall the temperature rise required to 
follow the batch profile, then the operator will intervene and adjust 
the flow up or down by 2% to 4%. Otherwise the temperature ramp 
rate that results from the set DowTherm flow is accepted. During the 
final phase of the batch, the equilibrium point for the system 
changes from a DowTherm flow of about 15% to almost 0%. The 
operators manage this phase by setting the flow to either 20% if the 
reactor temperature is below set point or 0% if the reactor 
temperature is above set point; these settings guarantee that the 
reactor temperature moves in the desired direction. This control 
method results in oscillation of the reactor temperature about the set 
point and requires constant attention by the operator. For all the 
above information Fig. 5. is relevant. 

In order to reduce the batch cycle time and improve product 
consistency, the plant desired to automate the temperature profile 
control sequence. The inability to obtain automatic closed loop 
control of the reactor temperature was a barrier to batch sequence 
automation. 

 
Fig. 4. The Simplified Scheme of a Batch Reactor System 

Fig. 5. The Batch Reactor System Response under Manual Control 
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4. APPLICATION RESULTS 

The advanced model-based controller was implemented on the 
reactor temperature control loop. The controller parameters were 
estimated from the observed system response from a previous batch 
and an approximate model of the system was developed in the 
controller using an open loop system identification based on 
Laguerre series representation. There was some concern that a single 
model of the system may not be valid for the entire batch sequence 
because the composition and viscosity of the polyester in the reactor 
changes substantially during the batch. The first attempt was based 
on a single model of the reactor response and the control 
performance was found to be very good. The controller was left in 
place and has since been controlling the reactor temperature in 
automatic. 

A chart of the temperature control performance of the advanced 
controller during an entire batch is shown in Figs. 6, 7. 

The integrating type response of the reactor is apparent from the 
control actions made by the controller as the reactor temperature 
follows the set point to higher temperature operating points with a 
final control output at 0%. Note that the batch sequence was 
suspended and the controller was placed in manual mode for a short 
time due to a water supply problem at the plant. The batch sequence 
was later resumed and the controller was placed in automatic for the 
rest of the batch. 

The operators now adjust temperature profile set point instead of 
the DowTherm flow. Complete automation of the batch sequence 

including automatic set point ramp generation for the reactor 
temperature is now possible. 

Operation of the reactor is also improved because the rate of 
vapour production is much more constant due to the improved 
control of the reactor temperature. This helps to avoid overloading 
of the vapour incinerator and possible violation of environmental 
emission regulations due to incomplete combustion of the process 
waste gases. 

 

 
Fig. 6. Screen Capture of the Advanced Adaptive Predictive Controller 

Performing Actions on the Batch Reactor 
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Fig. 7. Batch Reactor System Response under Automatic Control 
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5. CONCLUSIONS 

An advanced model-based predictive controller (MBPC) 
developed for use on processes with an integrating response 
exhibiting long dead time and time constants has been successfully 
applied to the temperature control of a batch reactor. 

The controller was easy to apply and configure. It has achieved 
very good control performance on a reactor that could not be 
controlled satisfactorily using PID controls implemented in the plant 
DCS. 

The automatic control of the reactor temperature now enables the 
plant to reduce batch cycle time, to increase plant productivity and 
to improve product quality and consistency through an automated 
batch sequencer. 
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